Lecture 7: Alex poly one Ruots are TOP slice.

History

- Helpsession May $22 @ 14-15$ r
- Next week: course survey!

1958: slice knots defined [Fox-Miluor]] originally ally
1960s: algelonaic concordance [Levine] in smote category
Why? Lack of "fundancutal" results in TOP category.
e.g. \exists ? normal bundles? Transversality?

1965: even dim knots are slice [Kervaire]
1970s: Casson-Gordon invts "beyond alg conc" in classical dim.
1970s: Kirby-Siebenmaun \Rightarrow high D results hold in TOP.
1980s: Breakthrough in 4D topology [Freedman-Quinn]
Landmarle applications:

- 4D Poincare conjecture: $M \simeq S^{4} \Rightarrow M \approx S^{4} \quad\left[\begin{array}{l}\text { Freedman, using } \\ \text { - "Fundamental tools" }[\text { Quinn] } \\ \text { constr. of casson }]\end{array}\right.$
- "Fundamental tools" [Quinn]
- every map $\Sigma^{2} \rightarrow M^{4}$ is epic to a generic immersion ie. loo. flat ens except fin. many transverse double ph.
- every loc. flat submfld of M^{4} has a (linear) normal bundle
- Σ_{1}, Σ_{2} bloc. flat submflds of M^{4}. \exists isotopy of M taking Σ_{1} to Σ_{1}^{\prime} such that Σ_{1}^{\prime} and Σ_{2} intersect mausnersely.
Many other applications: (TOP) h-(S-cobtums in dim 4 (TDP) sngery sequence exact (ω. π_{1} restriction (TOP) classifcah on results for 4 -uffeds.
goal \rightarrow Alex poly one knots are TOP slice
pertoday
Note: once we have the "find" tools, we note that alg conc. and CG invt also olostruct TOP slicenes.

Sphere embedding the $\left[\begin{array}{l}\text { Key technical result } \\ \text { nuderpinning all of } F Q\end{array}\right]$
M^{4} closed, oriented, connected 4-mifed.
Cony top, but coned cay month for convenience.
Recall: $\lambda:=Q_{M}: H_{2}\left(M ; \Pi L\left[\pi_{1} M\right]\right) \times H_{2}\left(M ; \Pi L\left[\pi_{1} M\right]\right) \rightarrow \Pi L\left[\pi_{1} M\right]$ $\pi_{2}{ }^{\prime \prime} \quad \pi_{2} M$ via Hurewicz.
the "equivariant intersection form"
Geometric interpretation: fig: $S^{2} \Omega M^{4}$ ie. emlliop. exceptat fin. many. taus. dblpti.
Schematic:

$$
\begin{gathered}
\lambda(f, g):=\sum_{p \in f i g g} \varepsilon_{p} \gamma(p) \in \Pi[[\pi, M] \\
\text { equivariant int. "number" }
\end{gathered}
$$ equivariant int. "number" Similarly,

$$
\mu(f):=\sum_{q \in f \cap f} \varepsilon q \gamma(q) \in \pi\left[\pi_{1} M\right] / \lg \bar{g}
$$

"equivariant self-int number
Note f embedding $\Rightarrow \mu(f)=0$
The: Suppose $f . g: S^{2} e M$ st. $\mu(f)=0$

- $\lambda(f, g)=1$
- g has trivial normal bundle

And assume that $\pi_{1} M$ is abelian or finite.
Then f is homotopic to a loc. flat emp \bar{f}
\& g is homolopic to an immesion $\bar{g} s \cdot t . \quad \bar{f} \times \bar{g}=p t$.
Note: algebra \Rightarrow topology
in erigh $D, \mu(f)=0 \Rightarrow f$ htpic to ens via Whitney $\pi_{1} M$ can be more general. "Good" gp.
\exists version for finite collections of $\{f, g\}$.

O-sungery characterisuhon of slicenes.
$k \subseteq S^{3}$ is TOP slice if and only if. $M_{k}:=S_{0}^{3}(k)=\partial W^{4}$ for W compact, connected 4 -wed such that
(i) $\Pi_{L} \cong H_{1}\left(M_{k}\right) \longrightarrow H_{1}(W)$ is an isomorphism
(ii) $\pi_{1} \omega$ is normally generated by $\mu_{k} \subseteq M_{k}$. (ie. gen by
(iii) $H_{2}(w)=0$. conjugates of μ_{k}

Proof: (\Longrightarrow)

$$
\text { Let } w:=B^{4} \backslash \ddot{\nu} \Delta
$$

note \exists normal bundle \Rightarrow hub. ned.

$$
H W: R \cong H_{1}\left(M_{k}\right) \cong H_{1}(w)
$$

$$
\mathrm{H}_{2}(w)=0
$$

Why is $\partial W=M_{k}$?
$\pi_{1}^{2} \omega$ nom gen by μ_{k}.

$$
\nu \Delta \cong D^{2} \times D^{2} . \quad \partial W=\left(S^{3}, \dot{\nu} K\right) \cup(\underbrace{\times} \times \partial D^{2})
$$

solid hons.
note $\lambda_{k} \longleftrightarrow \partial \Delta$ by le number.
\Longleftrightarrow "Think of W as a slice disc exterior".

$$
\begin{aligned}
& B:= W \cup D^{2} \times D^{2} \\
& M_{k} \longleftrightarrow \partial^{2} \times D^{2} \times D^{2} \\
& M_{k}^{\prime}
\end{aligned}
$$

Note: $\pi_{1} B=1$ since $\pi_{1} W \cong\left\langle\left\langle\mu_{k}\right\rangle\right.$.

$$
\text { Mayer-Vieloris } \Rightarrow \quad H_{*} B=0 \text {. }
$$

Hardertosec: $\partial B \cong S^{3}$.
Reality checte: μ_{k} bound a disc by construction

4DPoincave $\Rightarrow B \approx B^{4}$.
Also hard to see: $K \subseteq S^{3}=\partial B^{4}$ is slice ria ${ }^{*} \times D^{2} \subseteq D^{2} \times D^{2}$ [but follows from
the cons Auction]

